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A 'SUPERCONDUCTOR' MODEL OF ELEMENTARY PARTICLES AND ITS
CONSEQUENCES by Y. Nambu (University of Chicago)

(In absence of the author the paper was presented by G. Jona-Lasinio.)

I. In recent years it has become fashionable to apply field-theoretical

techniques to the many-body problems one encounters in solid state physics and
nuclear physics. This is not surprising because in a quantized field theory there is
always the possibility of pair creation (real or virtual), which is essentially a many-
body problem. We are familiar with a number of close analogies between ideas and
problems in elementary particle theory and the corresponding ones in solid state
physics. For example, the Fermi sea of electrons in a metal is analogous to the Dirac
sea of electrons in the vacuum, and we speak about electrons and holes in both cases.
Some people must have thought of the meson field as something like the shielded Coulomb
field. Of course, in elementary particles we have more symmetries and invariance
properties than in the other, and blind analogies are often dangerous.

At any rate, we should expect a close interaction of the two branches of
physics in terms of concepts and mathematical techniques, which make up the content
of quantum field theory. In this talk we are going to show another possibility of such an
interaction, but this time in the opposite direction to what has been the general trend.
Namely, the model of elementary particles we are going to talk about is motivated by
the mathematical theory of superconductivity which was first worked out with great
success by Bardeen, Cooper and Schrieffer.l The characteristic feature of the theory
is that the ground state of a superconductor is found to be separated by a gap from the
excited states, which, of course, has been confirmed experimentally., The gap is caused
by the fact that the attractive phonon interaction between electrons produce correlated
pairs of electrons with opposite momenta near the Fermi surface, and it takes a finite
amount of energy to break the correlation.

The BCS theory was given an elegant mathematical basis by Bogoliubovz. who
introduced a coherent mixture of electrons and holes to distuss the elementary excita-
tions (quasi-particles) in a superconductor. It is easy to see that such a particle has a
finite "rest energy, ' which corresponds to the finite energy gap. Let us assume the
following equations for electrons near the top of the Fermi surface:

EV = G+ P (1)
ELK;.’—SP\P}.P_"’¢ tf’P-f v

~ +
‘-P” is the wave function for an electron of momentum p and spin - (up), and AP
is one for a hole of momentum p and spin+, which means the absence of an electron of
momentum -p and spin - (down). E’ is the kinetic energy measured from the Fermi

surface; ¢ is a constant.
Eq. (1) gives the eigenvalues

Ep= 3'-\}2;'-1-47‘ , - (2)

So it takes an amount of energy J.h':"[ P 2P to excite such a quasi-electron from the
lower to the upper state. The quantity ¢ is actually obtained as a self-consistent,
self-energy (Hartree-Fock field) from the phonon-electron interaction. One finds that



where":\—w is the mean phonon frequency, andy the effective electron-electron inter-
action energy density on the Fermi surface.

Egs. (1) and (2) bear a striking resemblance to the Dirac equation and its eigen-
values. In the Weyl representation, the Dirac equation reads

E} =T pR+m¥

- (3)
E “PL=—-0".7, Y +m

EP = j‘._{?z__fmz_l

where LP, and q{,_are the two eigenstates of the chirality operator Yy .

This analogy may be a superficial one and devoid of physical significance. But
it would also be interesting to see what would happen if we took the analogy seriously
and pursued its consequences. The interpretation of Eq (3) would be then first of all that
the mass of a Dirac particle is a self-energy built up by some interaction, a statement
which surprises nobody. Indeed we shall find that even though the starting point looks
novel, there is nothing unconventional in our model. Nevertheless, we shall also see that
the analogy casts a new light on old problems, and reveals some new things which have
been overlooked in the usual discussion of the self-energy problem and the symmetry
properties of elementary particles.

To give an idea about our program, we draw up a list of correspondences between
superconductivity and the elementary particle theory.

Superconductivity Elementary particles
free electron , bare fermion (zero or small mass)
phonon interaction ' '~ some unknown interaction
energy gap observed mass (nucleon)
collective excitation meson bound nucleon pair
charge chirality
gauge invariance (5 -invariance (rigorous or

' approximate)

As we can see from the table, our problem will be to account for the nucleons
(and hyperons) and the mesons in a unified way from some basic field. There is no
strong reason why we should not also consider the leptons, but for the time being we
would like to exclude them. The reason will become clear later on.

As for the exact nature of the basic interaction which would produce the baryons
and mesons, our model does not say what it should be. Some other guiding principles
are needed for this purpose, but we do not seem to possess any convincing ones yet. So
looking around for some clues, we find two possibilities rather attractive for reasons of
simplicity and elegance. One is the Heisenberg type theory3 where we consider non-
linear spinor interactions. The other one is to use an analogy with the electromagnetic
field. The electromagnetic field is inherently related to the conservation of charge, and
the dynamie¢s of interaction is uniquely determined by the gauge group. Attempts to
generalize this idea to baryon problems have been made by Yang and Mills4, Yang and

Lee5, Fujii6, and recently by Sakurai’. —



Both types of theories have attractive points as well as difficulties. The most
serious obstacle in any theory dealing with self-energies is the divergence problem,
which is more pronounced in the Heisenberg type theory than in the other. The inter-
mediate boson theory runs into trouble because gauge invariance requires such a field
to be massless, yet massless boson fields other than electromagnetic and gravitational
do not seem to exist. We do not know whether a finite observed mass can be compatible

. with the invariance assumption.

II. We will consider here the Heisenberg type theory because of its greater practicsz
simplicity. The divergence will be disposed of by simple cut-off, as we do not claim to
have found a way to resolve this difficulty.

Thus we adopt the following model Lagrangian for the nucleon. Isotopic spin is

ignored.

L= - PLLY-JLPPEY-Fred Fu4]

This Lagrangian is invariant under the transformations

—

@) $— explidi]ly @ § - kP;-y‘o[-zo(J
b) Y- MPD'QL\',N‘). T = q‘j,L,‘PL.,.g,%.]

where A is a constant ¢ number. (Local gauge transformation is not possible here.)

a) implies the nucleon number conservation; b) will be called 5 invariance hereafter,
which implies the conservation of chirality: the number of right-handed (bare) particles
minus the number of left-handed particles is conserved. We get accordingly two con-

served currents
= 7 =0 7 =
‘5%(#‘*)”“\" J 52){”9 feYut =0

(5)

(6)

which can be directly verified.
Now we want to derive the observed nucleon mass in the Hartree-Fock approxi-

mation. Namely, we determine the mass by linearizing the interaction in which process
the assumed mass is used in taking expection values. We then have the relation

m=39 [L¥YY = ¥s LT Ke 4]
)

2-29 [ Ta S™0) -t Th Ve s®to)]
where S (‘A)is the nucleon Green's function having a mass m. In momentum space
this becomes i} 3 ‘

F \mdp
m= G e ®
A trivial solu»tion is of course M=(0. But with a cut-off we find also a non-trivial one
' = ] 2 -
. I_QIIET(" = \)T‘l" W"/Kl - (”“A<‘) S") 'IK/mI | (9)
provided that g( o and 'IT"([j“(". For lm/k‘a NKL| J B '

(7)

)
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Eq. (8) is of the same form as the 'energy gap equation' in the BCS theory. The non-
analytic character of the solution with respect to the coupling constant is easily
recognizable.

Our approximation scheme for the self-energy is illustrated by the following
Feynman diagrams (Fig.1).

" O00— + -

Fig. 1

Because of the attractive interaction (3‘ © ) between the virtual pair, the bubble
diagrams give rise to a catastrophic change not obtained by perturbation expansion.

Thus we have created a mass out of nothing. But there are two solutions
corresponding to M , not to speak of the trivial solution M =0. Presumably the .
vacuum corresponding to the latter solution is unstable like the normal state below the
critical temperature for a superconductor. But would the two non-trivial solutions
correspond to two different particles with equal mass? Heisenberg has found a similar
situation in his theory. He wants to identify the two massive particles with the proton
and the neutron.

Before discussing this problem, let us first worry about the conservation laws.
Eq. (6) represents operator equations, so they should hold, among other things, for the
matrix element between real one particle states, If we use the Dirac equation with a mass
for Y and Fa’ » the ordinary current is all right, but the )/5- current conservation breaks
down:

PR TGP = -aml A F I > e o (10)

This means that - X;B&« is not the correct vertex operator for the ''dressed'' particle
where the mass is entirely due to the interaction. We would have to take into account
the ""radiative corrections' also for the vertex. The general form of the Vs current
vertex operator $m can be determined from Lorentz invariance and the continuity
equation as follows:

C/* (7&,?, = (Ys‘ﬂ-}- afm:;;?,«);:qz)/ ?=ﬁ-ﬂ ‘ (11)

where F (9%) is a form factor.
On the other hand, the local field theory requires that the coefficients of J;- );‘
and {; obey dispersion relations of the type :

' q* “Im f(-xY Skt
—f(?") "'—f/o) - 1‘;—"’ oo (95,,‘;),(; ‘ (12)
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r
If F/D)-‘r“ © , then Eq. (11) has a pole at 4 = 0, which means, interms of Eq. (12),
the existence of a massless, pseudoscalar, boson contributing to the form factor. A
Feynman diagram showing this situation is given in Fig. 2.

Fig. 2

Since no such boson was assumed in our theory in the beginning, we have to
manufacture it somehow out of the original fermion field. A natural way would be to
interpret the boson as a bound state of a fermion pair---bound because of the attractive
interaction. Thus we are forced to the conclusion that if a finite mass can arise from a

Y¢ invariant theory there must also be zero-mass bound states of pairs. We would nc
have this situation if [ /p) =0 , but then the total )/5- charge

Pl vs v, #1712

would be zero, which leads to a contradiction (see the statement after Eq. (18) ). We
would not have the trouble either if the interaction were not )’5‘ invariant, e.g. if the
pseudoscalar term were missing in Eq. (4), which would not change Eq. (8). But we
have invited the trouble deliberately because we need pseudoscalar bosons in the nucleon
problem.

We can easily verify our conclusion within the present Hartree approximation.
For this purpose let us set up the Bethe~Salpeter equation for the nucleon-antinucleon
pair in the lowest order:

S(prg,p-1)= [ [T S(F*3) @ L p-2)5 7 5)0"7’
=I5 ITIL e S+2)E (prdip-1)SG-2)1p'] .(

6(?" ‘]ﬁ_l ’g is the wave function for a nucleon with momentum -l-.?_ and an anti-
nucleon with momentum % "P , the total momentum being .

We also note that if we add an inhomogenious term [T, (?.,. %) r. on the right-
hand side of Eq. (13) and write r‘ instead of é , then it would represent an integral
equation for a vertex part [! generated by [1, .

Now it is easy to see that the following functions satisfy the integral equation

F(p+d,9-1)= Lip+d)tertel (P-2)= -cr 15 -amig
o (Ptd, 2-2) = Lo (P#¥e +15 Lolp-L) =i 09 15 (e

(Lp= -ivp-m=-0 [S™E] 5 Lupa-ivp ).

13)
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Taking 7=0 , we get =‘JM(7 Fo =0, Inother words § 2AmM & is a solution of the
B-S equation for zero energy and momentum, which is a limiting case of a pirticle with
zero rest mass. In fact we can construct bound state wave functions for 7,/ 9#-0 , 7‘5 [)
starting from the above solution as the zeroth approximation. :
For arbitrary ? » Eq. (14) is a generalized Ward identity for the divergence of
the Y; current /?M (Eq. (11) (F (9‘):/ in our approximation,) A similar relation
is known for the ordinary current8, and can be derived in our case too. Since £ (75)/75): o
and (?I/_/‘P)': © , the continuity equation (10) is obviously satisfied. o(é"
Now the question of the mass degeneracy., By the }’5- transformation ‘P->t.°‘ (’l{
the mass m changes into m expLaid]=m (Cosaok-ré};’sinaao. In fact we could have assigned this
form to the mass operator from the beginning. There would be no change of physical
content. This arbitrariness is due to the fact that we can add any number of the zero-
mass, zero-energy ''mesons'' to the system. The vacuum itself is degenerate in this
sense.
To see this, consider the vacuum state ﬂ defined by

W= TP 0 =o0.
The infinitesimal (5‘ transformation is generated by
R= -—f“/" Sl % (15)

The zero-mass, zero-energy mesons are similar to the longitudinal photons
encountered in quantum electrodynamics. The ry and gauge transformations change
the distribution of the respective quanta, but cause no physical effects. What is, then,
the (; quantum number for the vacuum or the one particle state? This is the eigen-
value of f( » and may be written as

R=ne =N-1Ns =Nao | (16)

where hi( VH:) is the number of bare fermions (anti-fermions) with rs' = | . The
nucleon number M is given by

N= Ne+rhnNa —;)—-r -h- | | (17)

so that V% R= 3 \”t 'M.T-)is an even number,

Real nucleons with finite mass certainly are not eigenstates of K if they trans-
form in the conventional way under R . Sucha situation would be possible only if we
had a complete degeneracy with respect to R . This seems to be the present case.
Our world is conveniently described as a superposition of states with different R s,
but there are no realizable processes which change R (a superselection rule), and
hence the degeneracy does not manifest itself as physical effects.

Such an interpretation may not be quite satisfactory, but we would like to point
out that a similar situation appears in the BCS theory too with respect to charge con-
servation. At any rate we have not found pseudoscalar photons in nature, but rather we
are inclined to identify them with the mesons, which have mass in reality. Thus we will
have to admit that after all nature is not X invariant. We do not know whether there
is any other way out. But if the violation of the invariance were small, the foregoing
results would guarantee automatically the existence of meson states, this time with a

finite mass. . /
There are two ways to achieve our goal. One is to assume a finite bare mass #,,

which should be small compared to the observed mass #1 . The other is to destroy the



7

nice symmetry of the interaction a little bit. The former looks simpler,
and esthetically less objectionable. In this case, we can confirm by cal-
culation the following results. The nucleon self-energy has now lost the
freedom of yg rotation, but we still get two different masses of opposite
sign, in addition to the trivial perturbation solution. As mg increases,
the mass splitting grows larger, until at a certain point one of them
merges with the trivial branch and disappears thereafter, leaving only
the larger of the non-trivial solution.

On the other hand, the meson mass u is proportional to (mo/m)l/2
so that only the solution with mg/m>> 0 (the largest of the three solutions)’
can give rise to a stable bound pair, while the other two give rise to
'""ghost'' mesons.

Apart from the ghost trouble, this result raises the interesting
question of the possibility of producing mass multiplets of nucleons and
mesons since the superselection rule does not operate any more. But
the question has to be left for future study.

In our model, of course, we have obtained only neutral mesons
because isospin is neglected. But the generalization is easy. For ex-
ample, the interaction

L3 _
Lt = =9 [(PH=Z F6T ¢ iy

(where the 75 are the isotopic spin matrices) immediately leads to
pseudoscalar mesons of isospin 1. The gauge group in this case con-

sists of Y- Mf [uf;] ‘i’
¥ > rp LT-TTS | (19)
Y>> 4] il TH]Y

which correspond respectively to nucleonic charge, isotopic spin, and
the ysx isotopic spin conservation. 9 The last two form a four-dimen-
sional rotation group. :

III. Because of some interesting features in their own right, we will
discuss briefly the intermediate boson theory of primary interaction.

As before, we would like to take a y5 invariant theory, which means

that the boson is either vector or pseudovector. 92 We can immediately
write down a self-energy equation in our Hartree approximation, Namely
we equate the observed mass with the familiar lowest order self-energy.
Actually the self-energy consists of two parts: 3(p)= ' r.-e'f, /’)42;.{/))) z,
being the wave function renormalization. Thus wz get equations for &
and Z,separately. These are direct analogs of the equations we en-
counter in superconductivity, where the boson means the phonon. It
turns out that the vector interaction can give a non-trivial solution,
whereas the pseudovector does not, because of the wrong sign of the
self-energy. Physically speaking, the vector case causes an attractive
interaction between virtual pairs, and hence a catastrophic change.

Fig. 3 shows the diagrams corresponding to our approximation and the

(18)

above mentioned effect.
1= dd::::‘-\— -+ m,,_m‘__}_ /,/N//\;gl\\_*m

o or m‘m'rig.s )




It should be interesting that this is the approximation considered by La.ndaulo in his
discussion of the Green's functions.

The qualitative feature of the solution is similar to the one obtained in the
Heisenberg type theory, except for the nature of divergences. We also obtain the zero
mass bound states by solving the B-S equation in the ladder approximation. This
solution was first discovered by Goldsteinll, but was considered as an abnormal object.
Its raison d'etre has now become clear. According to Goldstein, however, the bound
state wave function is not always normalizable. For small coupling constants, which is
not really strong enough to cause such a binding, the norm of the wave function becomes
negative (a ghost state).

Another intriguing question in this type of theory is whether one can produce a
finite effective mass for the boson in a gauge invariant theory. Since we have done this
for the fermion, it may not be impossible if some extra freedom is given to the field.
Should the answer come out to be yes, the Yang-Mills-Yang-Lee-Sakurai theory of
vector bosons would become very interesting indeed.

Iv. We finally come to the predictions or applications of our theory. The theory
essentially boils down to the compound particle model of mesons, which has found some
advocates in the past (Fermi-Yang, Sakata, Okun, Heisenberg,....), The new feature
in our theory is that pseudoscalar mesons arise naturally and necessarily together with
the nucleon mass as a consequence of the symmetry properties of the theory. Their

type depends on the symmetry we assume. For example, it is possible to produce an
isospin 1 meson but not an isospin 0 meson according to Eq. (19). There may, of course,
be ordinary (or rather '"accidental'') bound states, but they will appear as excited or
compound states of these basic mesons, like the now fashionable 2 - and 3 resonances.

Being serious as we are about the compound particle model of the mesons, we
should also try to calculate the meson-nucleon coupling constants from the basic con-
stants. As is well known, there is no difference in the formal description of the par-
ticles whether they are elementary or compound. But if we know the wave function of a
compound system, then the coupling constant is determined by it. In the case of a
loosely bound system, the answer is simple. The pseudovector coupling constant

is given by N 4 0o
T oM (20)

where M is the nucleon mass, M the "meson'"" mass=¢ M~ 5’, and\a,:-m
is the range of the wave function.

For strongly bound systems, however, the result should depend sensitively on
the detailed dynamics since there are no "anomalous thresholds' in the dispersion re-
lations for the form factors which reflect the structure of the wave function. Never-
theless let us extrapolate the above formula and see what happens. We find for the pion

S B
Yir = v % (21)
where we have also taken into account that different fermion pairs (proton, neutron, /\,
= ) may contribute to the pion state and M is the number of such pairs, assuming
equal amount of contribution and neglecting mass fine structure. If we include all
possible baryon combinations, then h = 8, and 1“74&':0.075!

We have to admit that we do not yet know what type of Lagrangian can possibly
give rise to the observed baryon and meson spectrum. How much internal degree of
freedom do we need to start with in order to account for the observed particles (and not
to account for non-existing ones)? Why do the baryon masses split? Can we assume a

high degree of symmetry properties in the beginning and yet come out with a smaller
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amount of apparent symmetries? The last question seems particularly relevant since
we have found an example in the conflict between {4 invariance and finite mass. Here
it should be helpful to seek analogies in solid state physics for better physical under-
standing.

For example, it is not hard to foresee how nature can manifest itself in an un-
symmetric way ‘while keeping the basic laws symmetric if we compare the situation witi
ferromagnetism. In an ordinary material, the ground state of a macroscopic body has
spin zero practically, so that there is no preferred axis in space. In the ferromagnetic
case, on the other hand, all the spins are parallel in the ground state, and they must
point in some direction, thereby creating an assymetry in reality. Such spontaneous
polarizations may be happening in the world of elementary particles too. 12

We close this section with an application to weak interactions. So far this
seems the most interesting and useful result coming out of our model.

The first question is, what is the renormalization of the vector and axial vector
currents of the nucleon due to ''strong'' interactions, assuming there was a universal
Fermi coupling in the beginning? Adopting our Heisenberg model, it can be shown that
there will be no renormalization effect, and 3»’ 3.4 as long as we keep strict { in-
variance. The fact that A/ v is only approximately unity implies then that there is
a small violation of the invariance in agreement with the previous conclusion.

But this is not the whole story. We have already derived the nucleon axial vecto-
vertex r’5- » which will also appear in the weak processes. The small violation of the
invariancé gives the meson mass M , but will affect the form factor F of Eq. (11)
relatively little. Thus we may be able to write T

R s S -

A ' -
< (Yo + 2imYs 7») F(q%)
R
where now Fl) = 9/\/3, = lLas . The second term of Eq. ( 22) is small compared to
the first for the actual beta decay since 7‘(( L, For large 9L))/4" we expect to

recover the strict conservation: Fi/F, —g ;| as 9+—>e0,
Now we see that this second term enables one to determine the pion decay consta

since, according to the dispersion theory, it represents the process going through the
pion channel. Denoting the pion-nucleon (ps) coupling and the pion-lepton (pv) coupling b
and 31'. respectively, we find

{?G,-j.,,. =QM?VE_(-/41}z:mJA, (23

Using 3\!: /o"‘/m" G\/q]' /3,8, weget 2,1%0 8566 for the pion life time,
as compared to the observed g, 5‘6!/«,'8/@-&.

Eq. (23 ) is exactly the same as Goldberger-Treiman13 formula derived by an
entirely different approach and rather special assumptions. But we do not think that the
agreement is a coincidence. There is a certain class of models which can more or less
predict this relation. 14 The essential point seems to be that the pion is effectively

m

“treated as a bound state in the G-T theory. This manifests itself through the pion re-

normalization constant being zero or practically zero. :

We can blindly generalize Eq. ( 23 ) to the strangeness changing axial vector
current, where the pseudoscalar K~meson replaces the pion. Taking the AN vertex,
for example, we again get a relation between the weak coupling 2" ’ /\NK coupling

6‘( and the K-lepton coupling ;K :
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(24)

Gk 9 » (mu+m)s,

This relation does not contradict our present rather meager knowledge about these
constants.

Since we are based on the compound particle model, all the considerations that
have been made by various people in the past can be adopted in essence. The Gershtein-
Zeldovich and Feynman-Gell-Mann idea of T -lepton vector coupling is, of course, a
natural consequence of the model, though it has yet to be tested experimentally.

We feel that a systematic and quantitative calculation of the renormalization
effects can be undertaken in our theory with more confidence than in the past because
we have better understanding of the interrelation of different phenomena. So far we
have tried to estimate the decay life times for most of the decay modes of strange
particles under very crude assumptions. The result is in general satisfactory, but it
is not clear as to what it really means. We have not yet understood such basic questions
as the AT-.—_ J rule and the smallness of the hyperon beta decay rate in any fundamental

way.
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DISCUSSION -

Wightman: Is it true that the zero mass bound state moves up to become the J| -meson
when the Y; invariance is broken?
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Jona-Lasinio: When you break the Yg -invariance, for example by introducing a bare
nucleon mass M, , you dispose of an additional parameter which can be adjusted to

give the desired mass.

-

~ Guth: How can you say that the model is a Heisenberg type theory if you do not specify
the dynamics?

Jona-Lasinio: This theory is a Heisenberg type theory only in the sense that a non-
linear spinor equation is taken as starting point. The model is then linearized self-
consistantly and the cut-off which has to be introduced to eliminate divergencies should
be interpreted as a dynamical effect. The mechanism responsible for it is actually

unspecified.

J. Sakurai: It is important to emphasize that much of what has been reported is
independent of particular models. The only things that are relevant are: a) axial-
vector conservation holds; and b) the force between a nucleon and an antinucleon is

attractive,

Primakoff: When you break the Ys‘ invariance to introduce the T -meson mass, how
d k that f, YA ?
o you know tha A F(q)~ ?A/yv
0
Jona Lasinio: It is an assumption. In order to obtain both a finite T -meson mass and

a renormalization of the axial vector coupling, we have to break the )’5- invariance.
So it is assumed the same Y;‘ invariance violation is responsible for both effects.

A PARADOX CONCERNING POLARIZATION IN BETA DECAY
by R. H. Good, Jr. (Iowa State University, Ames, JIowa) and M. E. Rose (Oak Ridge

Nat. Lab.) (Presented by M. E. Rose)

In allowed beta transitions electron polarization is + v/c only when the ob-
servation is confined to a measurement of the electron momentum and spin. When other
dynamical variables are simultaneously measured, the beta particle polarization will be
100% under circumstances to be described below. It is emphasized that when the beta
particles are completely polarized the density matrix for the process corresponds to the

‘formation of pure states (one eigenvalue is unity and the other three eigenvalues are
zero).

For pure Fermi transitions the only other variable which is relevant is the neutri
direction. Then, aside from smearing effects arising from a lack of perfect energy and
angular resolution, pure states are always produced - that is, the beta polarization is
complete. This polarization is, in fact, equal to the unit vector in the direction of the
neutrino motion as seen from the reference system in which the electron is at rest. The
statement made above presupposes a two-component neutrino and, consequently, one
sees that if any variable is averaged over in this case, impure states (with less than
100% b -polarization) are involved. ‘

These results for the Fermi transition are cohxplétely understandable. However
when one considers Gamow-Teller transitions a rather paradoxical situation arises. '
Now the nuclear orientation’is added as a new dynamical variable. If the nuclei are




